## Regional Haze Update

Clean Air Act Advisory Group meeting
May 1, 2006

Andy Hawkins KDHE BAR – Monitoring and Planning

## Overview

- CENRAP status
  - Modeling workgroup update
  - Implementation and Control Strategies (ICS) workgroup update
- KS BART modeling... the early results
- Timelines review
- Next steps
- Your thoughts

## CENRAP Modeling Workgroup

- 2018 visibility projections underway
  - Looking at the uniform rate of progress (RPG) line
  - Most interior CENRAP Class I areas achieve 2018 RPG
  - Class I areas on international borders fail to achieve RPG
    - Mex/Can emissions assumed unchanged 2002/2018
- 2018 36 km modeling being performed now
  - 2018 visibility projections
  - Using both the current and new IMPROVE equation
- Source apportionment modeling for SO4, NO3, and PM
  - PSAT- Particulate Source Apportionment Technology
  - Geographic PM Source Apportionment (e.g., States)
  - Just started these analyses

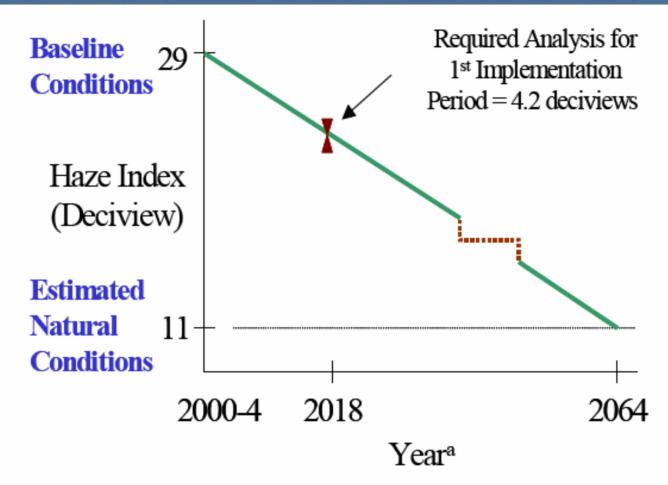
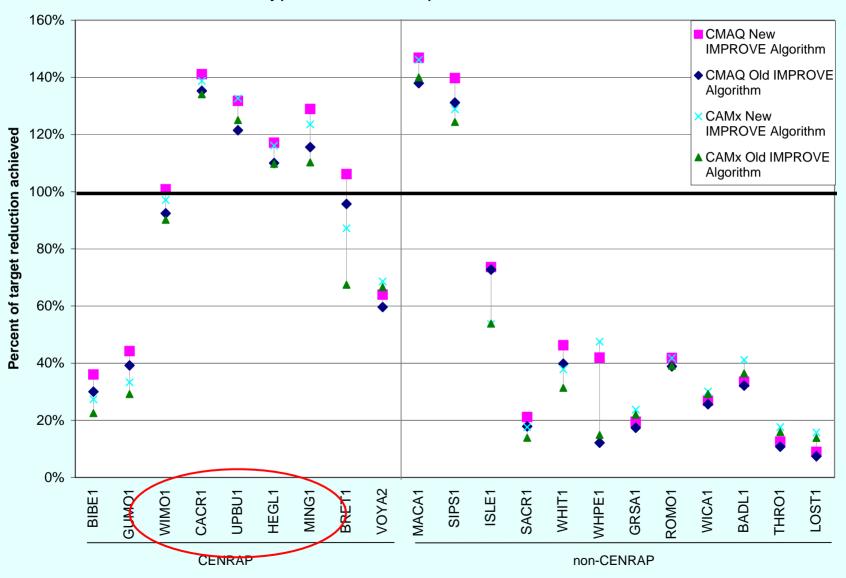




Figure 1-1 Example of method for determining mandatory Federal Class I area rate of progress to be analyzed in SIP development process.

(\* HI values for 2004 are based on 2000-2004 data, etc.)

#### Base18d/Typ02b Method 1 predictions for CENRAP+ sites



# CENRAP Modeling Workgroup (cont'd)

- Next steps
  - Perform source apportionment runs
    - Provides State contribution to visibility impacts (results in 2 weeks)
  - Model the effect of "estimated BART" controls
  - Model effects of regional EGU reductions
  - Model ICS workgroup-recommended control scenarios
    - Currently being developed

## CENRAP ICS Workgroup

- Reasonable progress
- Control scenarios to evaluate further
- Estimated BART emissions reductions
  - Finished first cut

# CENRAP ICS Workgroup (cont'd)


- Reasonable Progress
  - Address non-BART sources
  - EPA draft guidance released 11-28-05
  - Reasonable progress should ensure visibility conditions at or better than uniform rate of progress
  - Four statutory factors identified
    - 1. The costs of compliance
    - 2. The time necessary for compliance
    - 3. The energy and non-air quality environmental impacts of compliance
    - 4. The remaining useful life of existing sources that contribute to visibility impairment
  - Note factors do not include visibility impacts on Class I areas

# CENRAP ICS Workgroup (cont'd)

- Preparing recommendations for control strategy runs for modeling group
  - Based on "areas of influence" (AOIs) developed by Alpine Geophysics
    - Determined chiefly from back trajectories
    - Emissions impact potential
  - One recommendation is region-wide EGU reductions
    - Recommended by other states
  - Cost of controls is a key factor
  - BART impacts not currently included
  - Recommendations for further modeling analysis only!!!

## Wichita Mountains AOIs

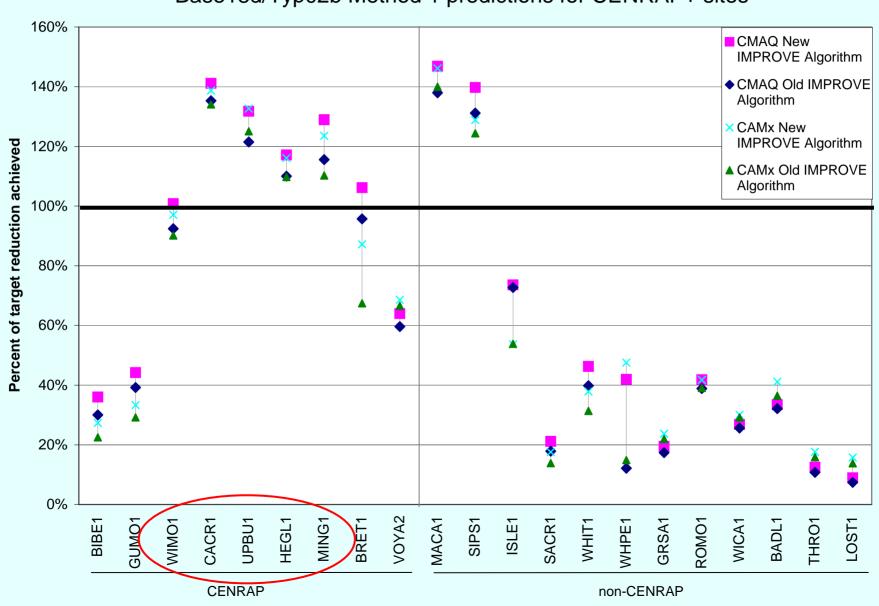
(green=NO<sub>3</sub>; red=SO<sub>4</sub>/EC/OC; blue=CM/FS)



## Example of Control Analysis

- Start with the county list from AOI-1
- Identify sources available for potential control
  - For example, >250 ton/yr of a single pollutant
- Apply all available control technologies to each potential source of reduction
  - Limit sources by parameters such as geography, residual contribution, etc.
- Incrementally sort reductions and costs by marginal cost from one control to the next
  - Eliminate technologies that are not as cost-effective as next highest

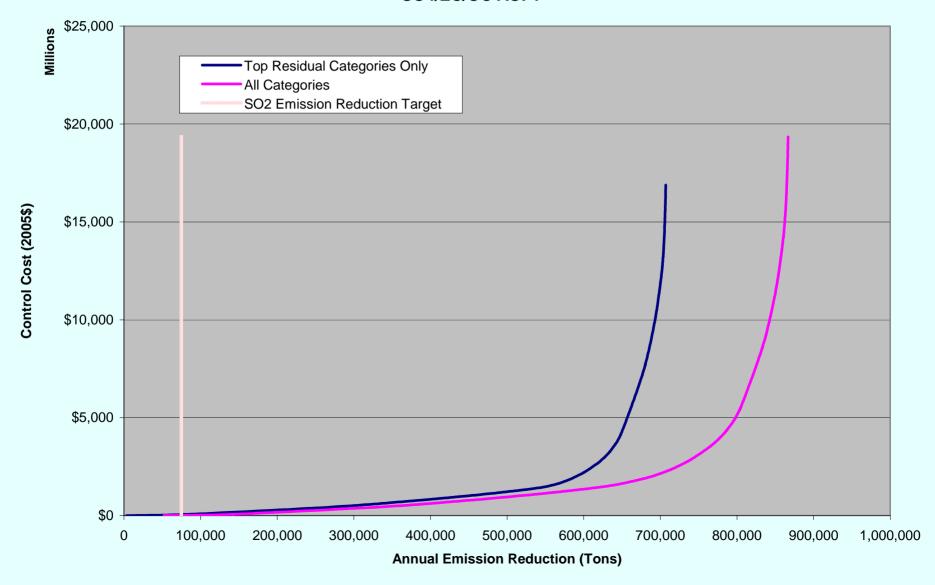
# Example of Control Analysis (cont'd)


- Develop incremental cost curve for AOI-1, sources, and pollutants of interest
- Use desired reduction value from reduction needs analysis (based on modeling) to pick emission reduction requirement
- Locate emission reduction target on cost effectiveness curve
- Assign controls associated with cost curve selection across all sources
- Recommend control scenarios to evaluate further

# Wichita Mountains AOI-1 SO<sub>4</sub>

## Wichita Mountains AOI-1 SO<sub>4</sub> Residual Emissions Contribution

| 2018 Base Case Annual SO2 Emissions |        |                                                                   |           |            |  |  |  |  |  |
|-------------------------------------|--------|-------------------------------------------------------------------|-----------|------------|--|--|--|--|--|
| Tier 1                              | Tier 2 | Source Category                                                   | Tons      | % of Total |  |  |  |  |  |
| 01                                  | 01     | Fuel Comb. Elec. UtilCoal                                         | 1,086,553 | 49%        |  |  |  |  |  |
| 01                                  | 02     | Fuel Comb. Elec. UtilOil                                          | 870       | 0%         |  |  |  |  |  |
| 01                                  | 03     | Fuel Comb. Elec. UtilGas                                          | 10,257    | 0%         |  |  |  |  |  |
| 01                                  | 04     | Fuel Comb. Elec. UtilOther                                        | 492       | 0%         |  |  |  |  |  |
| 01                                  | 05     | Fuel Comb. Elec. UtilInternal Combustion                          | 326       | 0%         |  |  |  |  |  |
| 02                                  | 01     | Fuel Comb. Industrial-Coal                                        | 232,258   | 10%        |  |  |  |  |  |
| 02                                  | 02     | Fuel Comb. Industrial-Oil                                         | 124,848   | 6%         |  |  |  |  |  |
| 02                                  | 03     | Fuel Comb. Industrial-Gas                                         | 90,898    | 4%         |  |  |  |  |  |
| 02                                  | 04     | Fuel Comb. Industrial-Other                                       | 14,902    | 1%         |  |  |  |  |  |
| 02                                  | 05     | Fuel Comb. Industrial-Internal Combustion                         | 981       | 0%         |  |  |  |  |  |
| 04                                  | 01     | Chemical & Allied Product Mfg-Organic Chemical Mfg                | 6,104     | 0%         |  |  |  |  |  |
| 04                                  | 02     | Chemical & Allied Product Mfg-Inorganic Chemical Mfg              | 63,351    | 3%         |  |  |  |  |  |
| 04                                  | 03     | Chemical & Allied Product Mfg-Polymer & Resin Mfg                 | 503       | 0%         |  |  |  |  |  |
| 04                                  | 04     | Chemical & Allied Product Mfg-Agricultural Chemical Mfg           | 20,938    | 1%         |  |  |  |  |  |
| 04                                  | 05     | Chemical & Allied Product Mfg-Paint, Varnish, Lacquer, Enamel Mfg | 14        | 0%         |  |  |  |  |  |
| 04                                  | 06     | Chemical & Allied Product Mfg-Pharmaceutical Mfg                  | 207       | 0%         |  |  |  |  |  |
| 04                                  | 07     | Chemical & Allied Product Mfg-Other Chemical Mfg                  | 123,405   | 6%         |  |  |  |  |  |


#### Base18d/Typ02b Method 1 predictions for CENRAP+ sites



### Emissions Reductions Needed to Yield Desired Concentration Reductions Based on Reduction in a Single Precursor

|                      |    | Reduction Requirement Assuming Single Species |         |      |      |        |                | Level               | 1 AOL                | Required SO2         | Required NOX  |  |
|----------------------|----|-----------------------------------------------|---------|------|------|--------|----------------|---------------------|----------------------|----------------------|---------------|--|
|                      |    | Control (ug/m3)                               |         |      |      | pecies | sulfate-to-S02 | nitrate-to-NOX      | Emissions Reductions | Emissions Reductions |               |  |
| Class I Area         | ST | Sulfate                                       | Nitrate | OC   | EC   | Soil   | Coarse         |                     |                      |                      |               |  |
|                      |    |                                               |         |      |      |        |                | (ug/m3/ton reduced) |                      | (tons / year)        | (tons / year) |  |
| Big Bend Nat'l Park  | TX | 1.25                                          | 1.25    | 1.97 | 0.79 | 7.88   | 13.13          | -0.004              | -0.002               | 110,000              | 230,000       |  |
| Boundary Waters      | MN | 0.51                                          | 0.51    | 1.27 | 0.51 | 5.08   | 8.46           | -0.006              | -0.002               | 31,000               | 94,000        |  |
| Breton Island        | LA | 0.12                                          | 0.12    | 0.33 | 0.13 | 1.31   | 2.19           | -0.002              | -0.00008             | 21,000               | 530,000       |  |
| Caney Creek          | AR |                                               |         |      |      |        |                | -0.003              | -0.0004              |                      |               |  |
| Guadalupe Mountains  | TX | 1.34                                          | 1.34    | 1.81 | 0.72 | 7.23   | 12.05          | -0.004              | -0.01                | 120,000              | 49,000        |  |
| Hercules-Glades      | MO |                                               |         |      |      |        |                | -0.003              | -0.0004              |                      |               |  |
| Mingo                | MO |                                               |         |      |      |        |                | -0.003              | -0.0004              |                      |               |  |
| Upper Buffalo        | AR |                                               |         |      |      |        |                | -0.003              | -0.0004              |                      |               |  |
| Voyageurs            | MN | 0.37                                          | 0.37    | 0.95 | 0.38 | 3.81   | 6.35           | -0.006              | -0.002               | 23,000               | 68,000        |  |
| Wichita Mountains    | OK | 0.21                                          | 0.21    | 0.40 | 0.16 | 1.61   | 2.68           | -0.001              | -0.005               | 75,000               | 15,000        |  |
| Mammoth Cave         | ΚY |                                               |         |      |      |        |                | -0.005              | -0.001               |                      |               |  |
| Sipsey Wilderness    | AL |                                               |         |      |      |        |                | -0.007              | -0.001               |                      |               |  |
| Isle Royale          | MI | 0.35                                          | 0.35    | 0.92 | 0.37 | 3.67   | 6.12           | -0.006              | -0.002               | 21,000               | 64,000        |  |
| Badlands             | SD | 0.99                                          | 0.99    | 1.93 | 0.77 | 7.73   | 12.88          | -0.008              | -0.001               | 45,000               | 360,000       |  |
| Great Sand Dunes     | CO | 0.68                                          | 0.68    | 1.02 | 0.41 | 4.07   | 6.78           | -0.02               | -0.003               | 12,000               | 82,000        |  |
| Lostwood Wilderness  | ND | 1.82                                          | 1.82    | 3.96 | 1.58 | 15.85  | 26.41          | -0.008              | -0.01                | 83,000               | 66,000        |  |
| Rocky Mtn Nat'l Park | CO | 0.59                                          | 0.59    | 0.94 | 0.37 | 3.74   | 6.24           | -0.02               | -0.007               | 11,000               | 31,000        |  |
| Salt Creek           | NM | 2.05                                          | 2.05    | 2.77 | 1.11 | 11.09  | 18.49          | -0.08               | -0.01                | 9,400                | 75,000        |  |
| Theodore Roosevit    | ND | 1.00                                          | 1.00    | 2.77 | 1.11 | 11.07  | 18.45          | -0.008              | -0.01                | 45,000               | 36,000        |  |
| Wheeler Peak         | NM | 0.45                                          | 0.45    | 0.63 | 0.25 | 2.54   | 4.23           | -0.08               | -0.01                | 2,000                | 16,000        |  |
| White Mountain       | NM | 0.67                                          | 0.67    | 0.90 | 0.36 | 3.60   | 6.00           | -0.08               | -0.01                | 3,000                | 24,000        |  |
| Wind Cave            | SD | 0.85                                          | 0.85    | 1.60 | 0.64 | 6.39   | 10.65          | -0.008              | -0.001               | 39,000               | 310,000       |  |

### Wichita Mountain SO4/EC/OC AOI-1



## Control Analysis Summary

- AOI Level 1 identified per pollutant
- All sources in AOI-1 identified
- Controls evaluated based on cost and needed reductions
  - Cost and controls come from EPA's AirControlNET
  - Needed reductions estimated from modeling results, extinction monitoring, and the reconstruction equation
- Recommendation of control scenario to evaluate provided to CENRAP modeling workgroup

## KDHE BART Update

- Draft BART screening protocol finished
  - Sent to EPA, FLMs, and BART-eligible sources mid-April (4/13/2006)
  - Utilizes CENRAP-developed meteorological inputs
  - Those sources with modeled impacts < 0.5 dv will not be subject to further BART analysis
  - Those sources that model > 0.5 dv will need to do additional modeling
    - Model out with refined modeling
    - Continue full BART process

## KDHE BART Update (cont'd)

- Initial modeling results indicate 8 out of 19 sources modeled will need additional modeling or a full BART analysis
- Sources with impacts > 0.5 dv should...
  - Contact KDHE for guidance in developing a BART modeling protocol
    - KDHE-approved protocol will be required
    - Note EPA and FLMs will also review protocol
  - Perform a full BART analysis

# CALPUFF Modeling Results

| Source                           | BADL | CACR | GRSA | HEGL | MING | ROMO | UPBU | WIMO | WICA |
|----------------------------------|------|------|------|------|------|------|------|------|------|
| Aquila - Arthur Mullergren       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Aquila - Cimarron River          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Aquila - Judson Large            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Basic Chemicals                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Frontier El Dorado Refining      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Kansas City BPU - Nearman        | 3    | 23   | 3    | 30   | 16   | 1    | 21   | 15   | 2    |
| Kansas City BPU - Quindaro       | 0    | 13   | 1    | 18   | 6    | 1    | 13   | 9    | 0    |
| KCP&L - La Cygne                 | 46   | 204  | 17   | 278  | 233  | 21   | 249  | 142  | 38   |
| Koch Nitrogen                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| McPherson Mun. Power Plant #2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Monarch Cement                   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| National Coop. Refinery Assoc.   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Owens Corning                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sunflower Electric - Garden City | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Westar Energy - Gordon Evans     | 32   | 33   | 11   | 28   | 17   | 13   | 30   | 102  | 24   |
| Westar Energy - Hutchinson       | 9    | 14   | 6    | 6    | 3    | 5    | 7    | 17   | 4    |
| Westar Energy - Jeffrey          | 82   | 150  | 27   | 182  | 158  | 28   | 161  | 165  | 55   |
| Westar Energy - Lawrence         | 2    | 14   | 1    | 17   | 7    | 1    | 14   | 9    | 1    |
| Winfield Mun. Power Plant #2     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## Timelines

- Regional haze
  - Natural visibility conditions by 2064
  - First RH SIP due December 2007
    - Reasonable progress through 2018
  - SIP due every 10 years thereafter
  - Progress demonstrations every 5 years
  - Baseline for current visibility 2000–2004
  - Future year visibility calculated from 2013-2018
    - Controls implemented by 2013 to stay on glide path

## Timelines (cont'd)

- The initial Regional Haze SIP
  - RH SIP due December 17, 2007
    - Must have enforceable controls in SIP
      - In the form of a permit or agreement with enforceable limits for source-specific BART
      - Must include implementation schedule
    - 30-day response to comments
    - 30-day public comment period for SIP
    - 30 days for internal KDHE review and public notice preparation
    - 180 days for PSD permit (if needed)
  - So, by March 2007 should have BART analysis complete and permits or agreements in place

## Next Steps for KDHE

- Continue CENRAP participation via ICS and Modeling workgroups
  - Identify any additional controls beyond BART
- Work with potential BART sources on refined modeling
- Work with remaining BART sources on agreements/permits meeting BART requirements

## Comments/Questions

- Andy Hawkins 785-296-6429
  - ahawkins@kdhe.state.ks.us
- Lynn Deahl 785-296-0871
  - Ideahl@kdhe.state.ks.us

Your thoughts/questions/concerns?